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[. CHALLENGES TOWARDS AGI

This poster discusses current unavoidable challenges
towards AGI:

o Artificial Neural Networks (ANNs) are
mostly of a »black-box« nature and difficult
to interpret.

e« ANNs have not yet shown great transferra-
bility of domain specific knowledge.

e ANNs tend to overestimate themselves.

e Introspection is currently limited.

II. SyMBOLISM VS CONNECTIONISM

Symbolic AI (SymAI)... uses high-level language to
formulate problems. Also, each step is human-inter-
pretable. It uses methods like logic programming,
semantic webs and search.

Sub-Symbolic AI (SubSymAI)... in contrast consists
of lower-level associations, e.g. statistical correlations,
meaning, they cannot be interpreted by means of
a high-level language. Often ANNs are used synony-
mously to sub-symbolic Al

III.Is DEEP LEARNING THE
FUTURE?

Deep Learning is hitting a wall. Recent advances
in Large Language Models (LLMs) come from new
methods and increased parameters (see Table 1).
However, growing computational size and cost are be-
coming main limiting factors. |1] Claims by Microsoft
Research, that GPT-4 shows “sparks of general intel-
ligence” [2] contrasts with critics that LLMs outputs
lack intrinsic meaning [3]. Recent leaks indicate GP-
T-4's use of domain-specific expert models [4], hence
a form of Neuro-Symbolism, at its core.

LLM | Parameters
GPT-2 1.5- 10"
GPT-3 | 1.75-10"
GPT-4 | >1-10"

Table 1. OpenAT’s large language models parameter sizes compared. [5, 6] GPT-4's
parameter count is currently based off of rumours. [4]

ANN’s Trustworthyness. Unfortunately, in edge cases,
Convolutional Neural Networks (CNNs) have shown
to behave unpredictably. A single altered pixel can

change the classification of an image drastically |7, §|.
The need for accountability, fairness and ethics
are further emphasized, as Al systems increasingly
impact human lives (e.g. autonomous driving and
medical applications). Explainable AI (XAI) methods
try to explain a model’s reasoning.

Local Interpretable Model-Agnostic FExplanations.
LIME can explain the predictions of any model
(model-agnostic), by learning a linear classifier on
systematically varied data around the requested data-
point. Therefore, sadly, no explanation of a model’s
general behaviour is possible. [9]
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From: johnchad@triton.unm @l (jchadwic)

Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

NN - BGSHRE- BIGS: riton.unm Bl

Hello Gang,

R8T FAY8 been some notes recently asking where to obtain the
DARWIN fish.

This is the same question I [i}i@ and I [J¥@ not seen an answer on
the

net. If anyone has a contact please post on the net or email me.

Figure 1. An example showing, that wrong features are learned, whilst achieving
good scores. Text Classification on News-Articles [10], where atheism vs. christianity

was predicted [11]. An email was regarded atheistic based on “Posting”, “Host” and
“NNTP”. One would expect, that “DARWIN fish” might be an indication.
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Figure 2. The big red cross is the classification to be explained (TBE-point). The

pink and blue background is the complex model’s classification (which might not be

continuous and is unknown to us). The blue dots and red crosses represent mutated

data-points around the TBE-point, which were put through the complex model. The

explanation takes these mutated data and learns a linear classifier (dashed line),
which can be explained. [11]

Layer- Wise Relevance Propagation. This method [12]
gives pixel-wise explanations for image classification

networks.
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Figure 3. After a prediction has been made, the Relevance Algorithm iterates from
output to input layer. This results a new image with relevance scores.
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Limitations of XAI The methods presented here are
applied on existing models after training. “Meaning-
ful” explainability would have to be built into a
model’s architecture. Section V presents a promising
approach.

IV.NEURO-SYMBOLIC Al

Game Als usually use sub-symbolic methods for
stochastic problems, e.g. a heuristic function for
estimating the quality of a move for Monte-Carlo-Tree-

Search or Alpha-Beta-Pruning. A prominent example
for “[Symbolic|Neuro||” is AlphaGo [13], see Figure 4.
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Figure 4. Looking ahead with Monte Carlo tree search [14]

NeSy Concept Learner. The Neuro-Symbolic Concept
Learner (NS-CL) can learn visual concepts, meaning
of words, and semantic parsing just from images and
Question-Answer (QA) pairs [15]. The NS-CL scores
are state of the art with ~99% on the CLEVR dataset.
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Symbolic Reasoning

Answer: Cylinder
Groundtruth: Box

________________________________________

o Semantic Parsing (Candidate Interpretations)
S 1+ Query(Shape, Filter(Red, Relate(Left. Filter(Sphere))))
‘E X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red)))) —
| X Exist(AERelate(Shape, Filter(Red, Relate(Left, Filtex(Sphere)))))i REINFORCE

Q: What 1s the shape of
the red object left of the
sphere?

Figure 5. CLEVR dataset QA-pair examples with increasing difficulty. NS-CL starts
with simple examples and increases difficulty.

NS-CL uses an attention-based language parser [16] to
create a hierarchical program of predicates. The predi-
cates are then processed by the corresponding module,
e.g. “Filter” will find a shape in the image.

V.PROBLEM DECOMPOSITION

Compositional Attention-Based Networks. Using a
technique similar to Long short-term memory (L-
STM), the Memory Attention and Composition
(MAC) performs equally to the NS-CL. The technique
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decomposes a query, then each MAC cell attends to a
part of the question. [17| This allows for pixel- and
word-wise explanations.
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Figure 6. Visualisation of the “read unit”. It makes explainable connections between

the words and the image. This is used as a basis for deduction. [17]

Essence Neural Networks (ENNs). As proposed by
18], they show how explainable reasoning can be made
possible without explicit use of SymAI. Similar to NS-
CL ENNs learn concepts. In ENNs distinctions are
made hierarchically (see Figure 7, Figure 8):

1. Differentia Neurons identify diversions between in-

put features.
2. Subconcept neuron layers distinct
3. Concept Neurons “group” ideas
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Figure 7. Example Architecture for distinguishing fruits from vegetables. Differentia
Neurons establish differences between concepts. Only “apple”’-neurons are depicted.

18]
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Figure 8. The structure of conceptual space is learned directly by ENNs. Differentia

neurons form hyperplane decision boundaries (lines) in conceptual space. They feed

forward to subconcept neurons, each forming a subregion (colored areas) defined

by differentia neuron boundaries. These feed into concept neurons, each forming a
possibly disconnected conceptual region from its subconcepts. [18]

VI. CAN AGI EMERGE?

Despite all efforts, humans are still ahead. The ques-
tion is: will the whole be bigger than the sum of
it’s parts? There are examples for emergence of in-
teresting behaviours; the public tends to call them

intelligent. A prominent hurdle is Al intentionality: at-
tention mechanisms advanced directedness, but hardly
can one speak of a self-conscious system. In terms of
Searle’s argument: may any current method only build
improved libraries?” Emergence happened once with
humans; why should it not happen twice?
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