
Sentiment Analysis on Twitter Data
July 29, 2023

Friedrich Answin Daniel Motz
daniel.motz@uni-jena.de

Friedrich-Schiller-Universität Jena

1 Introduction
From a philosophical standpoint, it’s an al-
most comic endeavour to teach a machine
to accurately interpret human language
and which feelings they intend to in-
duce in their fellow human beings. It gets
more absurd upon reflection, for which
purposes sentiment analysis is being con-
ducted: mostly product success metrics,
which track specific groups of users, possi-
bly over time, to reinforce the relationship
between a brand and said users.

Data scraped from microblogging plat-
tforms (but also social media and chat
apps) consist of abbreviated, exaggerated,
highly contextual (e.g. a response to
another tweet), informal and misspelt lan-
guage, which makes it difficult to classify.

1.1 In this paper
This work’s goal is to examine which
methods are useful in achieving a higher
accuracy on the given dataset.

2 Methods
Unless stated otherwise, an
sklearn LogisticRegression-Classifier and
Word2Vec [1, 2] was used.

2.1 Considerations
Previous research suggests, that part-of-
speech features might not be suited for this
task [3], so this work only uses other meth-
ods suggested, namely: removal of stop

words, lemmatisation, replacing capitalised
words with emphasising prepositions and
their lowercase form, removal of links and
mentions. A priori, this should put more
focus on which words are being used. This
stands in comparison to understand what
is being said.

2.2 No Pre-Processing
As a baseline the data was used as is (with
all special characters, quotes, @-signs, …).
Score = 0.736

2.3 Pre-Processing
Extensive Pre-Processing. The first ap-
proach was to filter everything except for
words which might contain a hint senti-
ment. This involved removing links, user
mentions (like @username58), special char-
acters (everything that’s not alphanumeric)
and also stopwords (for which NLTK’s
list of stopwords[4] was used) like ‘of’,
‘whom’, ‘had’, ‘same’ and ‘too’. All words
were transformed to lowercase. Then the
words were lemmatised to make messages
more comparable. There was no sign that
prepending emphasis words like ‘very’ or
‘much’ to words in caps or with repeat-
ing letters (e.g. “NO” and “looooove”).
The score with prepended emphasis words
was about 𝟎.𝟕𝟐𝟒. Without emphasis:
𝐒𝐜𝐨𝐫𝐞 = 𝟎.𝟕𝟑𝟏.

1

Medium Pre-Processing. In this ap-
proach only URLs, mentions, and special
characters were removed. Score = 0.732

Issues with Pre-Processing. Plenty of
manual adjustments are required to get sat-
isfying results. Furthermore, poorly written
regular expressions might create a bias
themselves. Some occurences might be fil-
tered, while others are not, of course, in
disregard of the target sentiment. Lemma-
tisation and porter stemming [5] have not
proven to be helpful in reducing the task
complexity. No meaningful improvement
could be noted.

2.4 Word Mapping
High Similarity. Such low scores lead to
believe, that the mapping is just not dif-
ferentiating enough or that the messages
simply cannot be very easily be differen-
tiated, without interpreting the meaning
(e.g. with a LLM) of what is being said. Us-
ing UMAP [6] Figure 1 and Figure 2 show
2D-reductions of the mappings.

Figure 1: Word2Vec of cleaned text

Figure 2: Word2Vec unprocessed text

The images use transparent points which
illustrate how densely the vectors are
distributed. Figure 2 shows a heap of al-
ternating messages in the top right corner.
However, both Figure 2 and Figure 1 show
how evenly distributed the text messages
are.

Lexicon and Rule-based approaches.
The VADER [7] score consist of positive,
negative and a neutral score ∈ [0, 1] where
higher is more intense. VADER also pro-
vides a compound score, the calculation
of which can be taken from the documen-
tation. The positive, negative and neutral
score were used as input vectors, whcih
sadly only performed at 𝐒𝐜𝐨𝐫𝐞 ≈ 𝟎.𝟔𝟔𝟒.
However, a combination of Word2Vec with
VADER resulted in a minimal increase
of ≈ 0.011 from 0.741 to 𝐒𝐜𝐨𝐫𝐞 = 𝟎.𝟕𝟓𝟐.
Each Word2Vec mapping of a sentence (a
vector) was additively moved by 𝑐 ⋅ 𝑠vader,
where 𝑐 ∈ [100, 1000] was found to be op-
timal close to 1000, and 𝑠vader is the
compound VADER score. The hope was
to dilute the heaps of words, which was,
in part, achieved. This can also be seen in
Figure 3 where there are two homogenous
regions.

2

Figure 3: VADER x Word2Vec of cleaned
text

Complexity Reduction. In addition to
stemming, removing words below a certain
frequency proved helpful in reducing the
task’s complexity and accuracy, with a min-
imal 𝐋𝐨𝐬𝐬 ≈ 𝟎.𝟎𝟎𝟐, but time improvements
of about 10%.

Removal of neutral words. Based
on VADER’s evaluation, words with a
neutral score ≥ 0.1 were left out. This
method showed to remove stop words,
which we already established were helpful.
Table 1 shows messages which could not be
matched correctly. For example “yay yay”
does indeed sound like a message with good
intent. However, the original text says:

Woke up on time today. Yay. Maths first,
then French! not so 'Yay.'

This illustrates how important con-
text of certain words is. And while
extensive pre-processing might reduce com-
plexity, it negatively impacts accuracy,
𝐒𝐜𝐨𝐫𝐞 = 𝟎.𝟔𝟔.

2.5 Ensemble Classifiers
In the hope that homogenous areas pro-
duced by the combination of Word2Vec and

VADER could be better predicted by Deci-
sion Trees or ensembles, both methods were
tested the provided training data with a
simple train-test split. Figure 4 shows how
VADER gives slight increases in test accu-
racy, while not impacting train accuracy.
It can be observed, that overfitted models,
such as 7 Tree Ensemble increase accuracy
by ≈ 0.025.

Generally, 9 Logistic Regression provided
the best results without any overfitting.
Technically speaking, 6 Extra Trees had the
highest accuracy on test data, while how-
ever massively overfitting.

Figure 4: Comparison of accuracies of
different classifiers on Word2Vec and

Word2Vec with VADER

3 Summary
The methods used did not prove effective.
The highest improvement of ≈ 0.012, which
was achieved by combining VADER and
Word2Vec (on cleaned data), is very low
compared to the effort. It should be ex-
plored how other text mapping methods
behave on the data set.

3

4 Appendix
target text
1 serious
0 yay yay
0 hope best
1 help
1 like
1 laugh
1 cut hand laugh
0 true die
0 okay better

Table 1: Mismatched messages taken from
the training set

Classifier Number
AdaBoostClassifier 𝑛=10 1
AdaBoostClassifier 𝑛=100 2
AdaBoostClassifier 𝑛=50 3

Bagging 𝑛=10 4
DecisionTreeClassifier 𝑑=10 5

ExtraTrees 𝑛=500 6
ExtraTrees 𝑛=10 7

Gaussian Naive Bayes 8
LogisticRegression 9

RandomForest 𝑛=10 10
RandomForest 𝑛=100 11
RandomForest 𝑛=500 12
RandomForest 𝑛=1000 13

Table 2: Classifiers Reference, where 𝑛
is the number of estimators and 𝑑 is

max_depth

For full test results, look for results.csv in
the submission folder.

Bibliography
[1] T. Mikolov, K. Chen, G. Corrado, and

J. Dean, “Efficient estimation of word
representations in vector space,” 2013.

[2] “Gensim.” https://radimrehurek.com/
gensim/models/word2vec.html

[3] E. Kouloumpis, T. Wilson, and J.
Moore, “Twitter sentiment analysis:
The good the bad and the Omg!,” 2011.

[4] “Natural language toolkit.” https://
www.nltk.org/index.html

[5] “Porter stemmer.” https://
tartarus.org/martin/PorterStemmer/

[6] “Uniform manifold approxiation and
projection.” https://pypi.org/project/
umap-learn/

[7] C. Hutto, and E. Gilbert, “A
parsimonious rule-based model for sen-
timent analysis of social media text,”
2014. [Online]. Available: https://
github.com/cjhutto/vaderSentiment

4

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://www.nltk.org/index.html
https://www.nltk.org/index.html
https://tartarus.org/martin/PorterStemmer/
https://tartarus.org/martin/PorterStemmer/
https://pypi.org/project/umap-learn/
https://pypi.org/project/umap-learn/
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

	Introduction
	In this paper

	Methods
	Considerations
	No Pre-Processing
	Pre-Processing
	Extensive Pre-Processing
	Medium Pre-Processing
	Issues with Pre-Processing

	Word Mapping
	High Similarity
	Lexicon and Rule-based approaches
	Complexity Reduction
	Removal of neutral words

	Ensemble Classifiers

	Summary
	Appendix
	Bibliography

